Practical Device Test Fixtures for 100G KR ... or Not and the Impact on ERL and $\mathrm{P}_{\text {max }} / \mathrm{V}_{\mathrm{f}}$ (ref: comment 19, 20, 21, 25)

Richard Mellitz, Samtec
Mike Li, Masashi Shimanouchi, Hsinho Wu, Intel

January 2020
IEEE 802.3 $100 \mathrm{~Gb} / \mathrm{s}, 200 \mathrm{~Gb} / \mathrm{s}$, and $400 \mathrm{~Gb} / \mathrm{s}$ Electrical Interfaces Task Force Interim Meeting Geneva, Switzerland

IEEE 802.3 $100 \mathrm{~Gb} / \mathrm{s}, 200 \mathrm{~Gb} / \mathrm{s}$, and $400 \mathrm{~Gb} / \mathrm{s}$ Electrical Interfaces Task Force

Agenda

Test fixture background

- Impact of small perturbations on hypothetical test fixtures
\square Measurement variably due to a few simple UUT (package) impedance variations across the hypothetical fixtures
\square Realistic device variations suggest $E R L_{\text {min }}$ and $P_{\text {max }} / V_{f}$ specs
- Summary/Recommendation

The Test Fixture Reference was Basically a Transmission Line

Clause 93

Figure 93-3-Test fixture reference insertion loss

Figure 93-5-Transmitter test fixture and test points

Ideally a Test Fixture Layout Might Look Like This

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

Variability does exist

Thoughts for practical fixtures \square Limit loss at ($\mathrm{f}_{\mathrm{b}} / 2$) to be between 1.2 and 1.6 dB

- Limit return loss
\square Limit IL ripple to 0.1 dB
- Called FOM

IEEE 802.3 $100 \mathrm{~Gb} / \mathrm{s}, 200 \mathrm{~Gb} / \mathrm{s}$, and $400 \mathrm{~Gb} / \mathrm{s}$ Electrical Interfaces Task Force

Variability is allowed ... BUT

$$
I L_{r e f}(f)=-0.0015+0.144 \sqrt{f}+0.069 f \mathrm{~dB} \quad 0.05 \leq f \leq 25
$$

The effects of differences between the insertion loss of an actual test fixture and the reference insertion loss are to be accounted for in the measurements. The reference insertion loss is illustrated in Figure 93-3.

The standard allows variability but specs are for the exact reference fixture.

- It's the implementer responsibility to adjust
- "The bridge doesn't care that the truck height has variability"
- Question:
- How much margin does a perfect fixture cost?

Hypothetical Fixture Models Used To Investigate Examples Of Variability

-1. 4 dB at 100 ohm (differential) Megtron $7 \mathrm{H}-$ VLP (idea for a reference fixture)

- 1.2 dB fixture consisting of 2 segments
- 105 ohm section ($\sim 0.4^{\prime \prime}$) and 95 ohm section (${ }^{\sim} 0.8^{\prime \prime}$)
- 30 fF between sections representing mode conversion
- 1.6 dB fixture consisting of 2 segments
- 105 ohm section (${ }^{\sim} 0.4^{\prime \prime}$) and 95 ohm section (${ }^{\sim} 1.2^{\prime \prime}$)
- 30 fF between sections representing mode
mode conversion occurs here
 conversion

Idea: 1.4 dB (@ 26.56 GHz) Fixture Strawman

\square For this experiment replace equation 93-1

$$
\Pi_{r e f}(f)=-0.0015+0.144 \sqrt{f}+0.069 f \mathrm{~dB} \quad 0.05 \leq f \leq 25
$$

\square With

- $I L_{r e f}=0.0037+0.1052 \sqrt{f}+0.0337 f$

- 1.4 dB at 100 ohm (differential) Megtron 7 H-VLP (strawman for reference fixture)
- Dotted blue line is the actual measurement
- Red line is the fit with above coefficients

IEEE $802.3100 \mathrm{~Gb} / \mathrm{s}, 200 \mathrm{~Gb} / \mathrm{s}$, and $400 \mathrm{~Gb} / \mathrm{s}$ Electrical Interfaces Task Force

Even the 2 test fixtures don't look too bad

So how much variability do they cause?

First Set of Data to Illustrate Variability Experiment

\square For each of test fixture, measure (TPOa)

- ERL
- V_{f}
- $P_{\max } / V_{f}$
\square Also measure ERL, Vf, Pmax/V $/ \mathrm{V}_{\mathrm{f}}$ at TPO
\square Sweep Package length and perform a DOE for package impedances
- That's only 3 variables in this limited experiment
- z_{p} : 8 mm to 32 mm in 0.25 mm steps
- $z_{c}: 87.5 \Omega+/-10 \%$
- $z_{c 1}: 92.5 \Omega+/-10 \%$
- More variable added later to determine specification
\square Goal is to determine spec impact for the above 3 parameters for each of the test fixtures

Recommended Parameters for Computing ERL, Vf,

 Pmax/V ${ }_{f}$$\square$ ERL parameters

- $\mathrm{N}_{\mathrm{bx}}=21$ (comment 22 modified)
- Seems to be consensus here: $21=\mathrm{N}_{\mathrm{b}}+\mathrm{N}_{\mathrm{f}}{ }^{*} \mathrm{~N}_{\mathrm{g}}$
- $\beta_{x}=2.4 \mathrm{GHz}$ (comment 21)
- $\rho_{x}=0.32$ (comment 21 modified)
- Seems to be consensus to keep same as .3cd
- $\mathrm{N}=200$
- V_{f} parameters (comment 25, see mellitz_3ck_01b_0919)
- $\mathrm{N}_{\mathrm{v}}=200$
- In practice when computing from s-parameters and a computed step response this value may need to lower because of some data may not have sufficient low frequency data.
- Produces a V_{f} more like a real steady state voltage
- $k=-3$ to 1
- $D_{p}=4$

Point by point case differences between ERL at TPO and TPOa for discussion in next slide

The Fixtures Introduce an Offset and Variability

The reference fixture has the least amount of variably.
\square Even the very good 100 ohm test fixture has variability
\square Accounting for practical test fixture variability test dwarfs the limit we would want set
\square Recommend:

- Specify transmitter at a TPO and receiver ERL at TP5
- Remove test fixture references
- Modified remedy for comment 19

$P_{\max } / V_{f}$ is impacted when tp0 is the test point

Draft Amendment to IEEE Std 802.3-2018
IEEE P802.3ck Task Force name Task Force
12th December 2019

Table 163-5-Summary of transmitter specifications at TP0a (continued)

Add a few more parameter to determine spec's

\square Use 6 variables in to determine ERL and $\mathrm{P}_{\max } / \mathrm{V}_{\mathrm{f}}$ variability,

- $\mathrm{z}_{\mathrm{p}}: 8 \mathrm{~mm}$ to 32
- $z_{c}: 87.5 \Omega+/-10 \%$
- $\mathrm{z}_{\mathrm{c} 1}: 92.5 \Omega+/-10 \%$
- $\mathrm{R}_{\mathrm{d}}: 50 \Omega+/-10 \%$
- $\mathrm{C}_{\mathrm{d}}: 120 \mathrm{fF}+0 \%, 5 \%, 10 \%$
- L_{s} : $120 \mathrm{pH}-0 \%, 5 \%, 10 \%$
- Product of $\mathrm{L}_{\mathrm{s}} \mathrm{C}_{\mathrm{d}}$ is constant

ERL fit to parameter is pretty good and $P_{\max } / V_{f}$ fits are excellent.

\square Lock the Z_{p} to 31 as in the COM reference

- This is the max loss package
\square Use manufacturing variably and fit uncertainty to determine ERL and $P_{\max } / V_{f}$ specifications

ERL Fit is pretty good

the RMS fits error at $Z_{p}=31 \mathrm{~mm}$ is $<0.2 \mathrm{~dB}$

- This RMS uncertainty is used to lower the spec.

ERL $L_{\text {min }}$ Recommendation

- For 50000 cases manufacturing cases the minimum ERL is 14.65 dB
\square Subtract 0.2 dB for fit uncertainty
\square Recommend $E R L_{\text {min }}=15 \mathrm{~dB}$
- Measured at tp0 (and TP5)
- This keeps in like with .3cd

$P_{\max } / V_{f}$ Fit is excellent

To put another way it is a good measure of package and termination insertion loss.
The RMS fits error at $Z_{p}=31 \mathrm{~mm}$ is $<0.002 \mathrm{~dB}$

- This RMS uncertainty used to lower the spec

$P_{\max } / V_{f}$ Recommendation

- For 50000 cases manufacturing cases the minimum $\mathrm{P}_{\max } / \mathrm{V}_{\mathrm{f}}$ is 0.734
\square Subtract 0.002 dB for fit uncertainty
\square Recommend $P_{\max } / V_{f} \min =0.73$
- Measured at TPO (and TP5)
Δ Pmax/Vf Tp0

\triangle Summary Statistics Mean 0.7508539 Std Dev 0.0023978 Minimum 0.7349937

Summary/Recommendation

\square Specify ERL, Vf, and Pmax at tp0
\square Specify $\mathrm{P}_{\text {max }} / \mathrm{V}_{\mathrm{f}} \min =0.73$
\square Specify $E R L_{\text {min }}=15 \mathrm{~dB}$ for $T x$ and $R x$
\square Remove reference to tpOa and Tp5a test fixtures for transmitter testing and receiver ERL.

Backup

COM template configuration used to compute ERL, $\mathrm{V}_{\mathrm{f}}, \mathrm{P}_{\max } / \mathrm{V}_{\mathrm{f}}$

Z_{p} and Z_{c} are set by experiment control

Channel s
parameters are an ideal thru (No RL and no IL)

A_v becomes the Vf spec at TPO.

Table 93A-1 parameters			
Parameter	Setting	Units	Information
f_b	53.125	GBd	
f_min	0.05	GHz	
Delta_f	0.01	GHz	
C_d	[1.2e-4 0]	nF	[TX RX]
L_s	[0.12, 0]	nH	[TX RX]
C_b	[0.3e-4 0]	nF	[TX RX]
2_p select	1		[test cases to run]
z_p (TX)	[11; 1.8]	mm	[test cases]
z_p (NEXT)	[0; 0]	mm	[test cases]
z_p (FEXT)	[0; 0]	mm	[test cases]
z_p (RX)	[0; 0]	mm	[test cases]
C_p	[0.87e-4 0]	nF	[TX RX]
R_0	50	Ohm	
R_d	[50 50]	Ohm	[TX RX]
A_v	0.415	v	vp/vf=. 694
A_fe	0.415	v	vp/vf=. 694
A_ne	0.608	v	
L	4		
M	32		
filter and Eq			
f_r	0.75	*fb	
c (0)	0.54		min
c(-1)	0		[min:step:max]
c(-2)	0		[min:step:max]
c(-3)	0		[min:step:max]
c (1)	0		[min:step:max]
N_b	0	UI	
b_max(1)	0.85		
b_max(2..N_b)	0.2		
g_DC	0	dB	[min:step:max]
f_z	200	GHz	
f_p1	200	GHz	
f_p2	400	GHz	
g_DC_HP	0		[min:step:max]
f_HP_PZ	0.0001	GHz	

