Practical Device Test Fixtures for 100G KR ... or Not and the Impact on ERL and P_{max}/V_f (ref: comment 19, 20, 21, 25)

Richard Mellitz, Samtec Mike Li, Masashi Shimanouchi, Hsinho Wu, Intel

January 2020 IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force Interim Meeting Geneva, Switzerland

Agenda

- □ Test fixture background
- □ Impact of small perturbations on hypothetical test fixtures
- Measurement variably due to a few simple UUT (package) impedance variations across the hypothetical fixtures
- \Box Realistic device variations suggest ERL_{min} and P_{max}/V_f specs
- □ Summary/Recommendation

The Test Fixture Reference was Basically a Transmission Line

Clause 93

Figure 93–3—Test fixture reference insertion loss

Figure 93–5—Transmitter test fixture and test points

Ideally a Test Fixture Layout Might Look Like This

~ 1.4" Megtron H-VLP 1.4 dB loss at the Nyquist Sampling Frequency $(f_{\rm b}/2)$ **BGA** TP0

Variability does exist

70 mm x 70 mm packages have many pins out which require a variety of ways to break out

Goo μm to 800 μm pin pitch may force trace only between pins

Thoughts for practical fixtures

□ Limit loss at (f_b/2) to be between 1.2 and 1.6 dB

Limit return loss

Limit IL ripple to 0.1 dB

• Called FOM_{ILD}

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

 \bigcirc

Variability is allowed ... BUT

Clause 93 $IL_{ref}(f) = -0.0015 + 0.144 \sqrt{f} + 0.069 f \text{ dB} \quad 0.05 \le f \le 25$

The effects of differences between the insertion loss of an actual test fixture and the reference insertion loss are to be accounted for in the measurements. The reference insertion loss is illustrated in Figure 93–3.

- □ The standard allows variability but specs are for the **exact** reference fixture.
- □ It's the implementer responsibility to adjust
 - "The bridge doesn't care that the truck height has variability"
- **Question**:
 - How much margin does a perfect fixture cost?

(93-1)

Hypothetical Fixture Models Used To Investigate Examples Of Variability

I. 4 dB at 100 ohm (differential) Megtron 7 H-VLP (idea for a reference fixture)

□ 1.2 dB fixture consisting of 2 segments

- 105 ohm section (~0.4") and 95 ohm section (~0.8")
- 30 fF between sections representing mode conversion
- □ 1.6 dB fixture consisting of 2 segments
 - 105 ohm section (~0.4") and 95 ohm section (~1.2")
 - 30 fF between sections representing mode conversion

Idea: 1.4 dB (@ 26.56 GHz) Fixture Strawman

□ For this experiment replace equation 93-1

 $IL_{ref}(f) = -0.0015 + 0.144 \sqrt{f} + 0.069 f \text{ dB} \quad 0.05 \le f \le 25$

(93-1)

With

• $IL_{ref} = 0.0037 + 0.1052\sqrt{f} + 0.0337f$

- 1.4 dB at 100 ohm (differential) Megtron 7 H-VLP (strawman for reference fixture)
- Dotted blue line is the actual measurement
- Red line is the fit with above coefficients

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

Even the 2 test fixtures don't look too bad

□ So how much variability do they cause?

First Set of Data to Illustrate Variability Experiment

□ For each of test fixture, measure (TPOa)

- ERL
- V_f
- P_{max}/V_{f}

□ Also measure ERL, Vf, Pmax/V_f at TP0

□ Sweep Package length and perform a DOE for package impedances

- That's only 3 variables in this limited experiment
 - z_p : 8 mm to 32 mm in 0.25 mm steps
 - z_c: 87.5 Ω +/- 10%
 - z_{c1}: 92.5 Ω +/- 10%
 - More variable added later to determine specification

Goal is to determine spec impact for the above 3 parameters for each of the test fixtures

Recommended Parameters for Computing ERL, Vf, $Pmax/V_f$

□ ERL parameters

- N_{bx} = 21 (comment 22 modified)
 - Seems to be consensus here: $21 = N_b + N_f^* N_g$
- $\beta_X = 2.4 \text{ GHz} \text{ (comment 21)}$
- $\rho_x = 0.32$ (comment 21 modified)
 - Seems to be consensus to keep same as .3cd
- N = 200

□ V_f parameters (comment 25, see mellitz_3ck_01b_0919)

- N_v = 200
 - In practice when computing from s-parameters and a computed step response this value may need to lower because of some data may not have sufficient low frequency data.
 - Produces a V_f more like a real steady state voltage
- k = -3 to 1
- D_p = 4

Point by point case differences between ERL at TPO and TPOa for discussion in next slide

The Fixtures Introduce an Offset and Variability

- □ The reference fixture has the least amount of variably.
- □ Even the very good 100 ohm test fixture has variability
- Accounting for practical test fixture variability test dwarfs the limit we would want set
- □ Recommend:
 - Specify transmitter at a TPO and receiver ERL at TP5
 - Remove test fixture references
 - Modified remedy for comment 19

P_{max}/V_f is impacted when tpO is the test point

Draft Amendment to IEEE Std 802.3-2018 IEEE P802.3ck Task Force name Task Force IEEE Draft P802.3ck/D1.0 12th December 2019

Table 163–5—Summary of transmitter specifications at TP0a (continued)

Reference	Value	Units	
93.8.1.3	30	mV	
163.9.2.1	TBD	dB	
93.8.1.4	TBD	dB	
162.9.3.1.2	0.4 0.6	v	
162.9.3.1.2	TBD × v_f	v	
120D.3.1.2	0.95	—	
	93.8.1.3 163.9.2.1 93.8.1.4 162.9.3.1.2 162.9.3.1.2	93.8.1.3 30 163.9.2.1 TBD 93.8.1.4 TBD 162.9.3.1.2 0.4 0.6 162.9.3.1.2	

Add a few more parameter to determine spec's

 \Box Use 6 variables in to determine ERL and P_{max}/V_{f} variability,

- z_p: 8 mm to 32
- z_c: 87.5 Ω +/- 10%
- z_{c1}: 92.5 Ω +/- 10%
- $R_d: 50 \Omega + /-10\%$
- C_d: 120 fF + 0 %, 5 %, 10 %
- L_s: 120 pH 0 %, 5 %, 10 %
 - Product of L_sC_d is constant

ERL fit to parameter is pretty good and P_{max}/V_f fits are excellent.

 \square Lock the Z_p to 31 as in the COM reference

• This is the max loss package

Use manufacturing variably and fit uncertainty to determine ERL and P_{max}/V_f specifications

ERL Fit is pretty good

□ the RMS fits error at Z_p =31mm is < 0.2 dB □ This RMS uncertainty is used to lower the spec.

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

* Ls change inversely to Cd

- For 50000 cases manufacturing cases the minimum ERL is 14.65 dB
- Subtract 0.2 dB for fit uncertainty
- \Box Recommend ERL_{min} = 15 dB
 - Measured at tp0 (and TP5)
 - This keeps in like with .3cd

Minimum 14.655186

$$P_{max}/V_f$$
 Fit is excellent

- To put another way it is a good measure of package and termination insertion loss.
- \Box The RMS fits error at Z_p=31mm is < 0.002 dB
- □ This RMS uncertainty used to lower the spec

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

* Ls changes inversely to Cd

 P_{max}/V_f Recommendation

- For 50000 cases manufacturing cases the minimum P_{max}/V_f is 0.734
- Subtract 0.002 dB for fit uncertainty
- \Box Recommend P_{max}/V_f min = 0.73
 - Measured at TPO (and TP5)

Summary/Recommendation

- □ Specify ERL, Vf, and Pmax at tp0
- \Box Specify P_{max}/V_f min = 0.73
- \Box Specify ERL_{min} = 15 dB for Tx and Rx
- Remove reference to tpOa and Tp5a test fixtures for transmitter testing and receiver ERL.

Backup

COM template configuration used to compute ERL, V_f, P_{max}/V_{f}

Z_p and Z_c are set by experiment control

Channel s parameters are an ideal thru (No RL and no IL)

A_v becomes the Vf spec at TPO.

Table 93A-1 parameters			I/O control		Table 93A–3 parameters				
Parameter	Setting	Units	Information	DIAGNOSTICS	0	logical	Parameter	Setting	Units
f_b	53.125	GBd		DISPLAY_WINDOW	0	logical	package_tl_gamma0_a1_a2	[0 0.0009909 0.0002772]	
f_min	0.05	GHz		CSV_REPORT	0	logical	package_tl_tau	6.141E-03	ns/mm
Delta_f	0.01	GHz		RESULT_DIR	.\results\100GEL_C	R_{date}	package_Z_c	[87.5 87.5 ; 92.5 92.5]	Ohm
C_d	[1.2e-4 0]	nF	[TX RX]	SAVE_FIGURES	0	logical	benartsi_3ck_01_0119 & mellitz_3ck_01_0119		ck_01_0119
L_s	[0.12, 0]	nH	[TX RX]	Port Order	[1 3 2 4]		Table 92–12 parameters		
C_b	[0.3e-4 0]	nF	[TX RX]	RUNTAG	CR_eval_		Parameter	Setting	
z_p select	1		[test cases to run]	COM_CONTRIBUTION	0	logical	board_tl_gamma0_a1_a2	[0 3.8206e-04 9.5909e-05]	
z_p (TX)	[11; 1.8]	mm	[test cases]	1	Operational		board_tl_tau 5.790E-03 ns/mm		ns/mm
z_p (NEXT)	[0;0]	mm	[test cases]	COM Pass threshold	3	dB	board_Z_c	100	Ohm
z_p (FEXT)	[0;0]	mm	[test cases]	ERL Pass threshold	10	dB	z_bp (TX)	110.3	mm
z_p (RX)	[0;0]	mm	[test cases]	DER_0	1.00E-04		z_bp (NEXT)	110.3	mm
C_p	[0.87e-4 0]	nF	[TX RX]	T_r	6.16E-03	ns	z_bp (FEXT)	110.3	mm
R_0	50	Ohm		FORCE_TR	1	logical	z_bp (RX)	110.3	mm
R_d	[50 50]	Ohm	[TX RX]				C_0	[0.29e-4]	nF
A_v	0.415	V	vp/vf=.694	TDR	and ERL options		C_1	[0.19e-4]	nF
A_fe	0.415	V	vp/vf=.694	TDR	1	logical	Include PCB	0	logical
A_ne	0.608	V		ERL	1	logical			
L	4			ERL_ONLY	1	logical		Floating Tap Control	
М	32			TR_TDR	0.01	ns	N_bg	0	0 1 2 or 3 groups
	filter and Eq			Ν	200		N_bf	3	taps per group
f_r	0.75	*fb		beta_x	2.4000E+09		N_f	40	UI span for floating taps
c(0)	0.54		min	rho_x	0.32		bmaxg	0.2	max DFE value for floating taps
c(-1)	0		[min:step:max]	fixture delay time	[00]	[port1 port2]	cable assemblies require this for each HCB		
c(-2)	0		[min:step:max]	TDR_W_TXPKG	1		ICN parameters (v2.73)		
c(-3)	0		[min:step:max]	N_bx	21	UI	f_f	12.919	
c(1)	0		[min:step:max]	N_v	200	UI	f_n	12.919	
N_b	0	UI		Re	eceiver testing		f_2	39.844	
b_max(1)	0.85			RX_CALIBRATION	0	logical	A_ft	0.600	
b_max(2N_b)	0.2			Sigma BBN step	5.00E-03	V	A_nt	0.600	
g_DC	0	dB	[min:step:max]	Noise, jitter		heck_3ck_03b_0319	Adopted Mar 2019	COM V2.77 but can do same on COM 2.76 by setting N_b to 200	
f_z	200	GHz		sigma_RJ	0.01	UI	walker_3ck_01a_0719	Adopted July 2019	
f_p1	200	GHz		A_DD	0.02	UI	result of R_d=50		
f_p2	400	GHz		eta_0	8.2E-09	V^2/GHz	benartsi_3ck_01a_0719	no used for KR	
g_DC_HP	0		[min:step:max]	SNR_TX	33	dB	mellitz_3ck_03_0919		
f_HP_PZ	0.0001	GHz		R_LM	0.95				